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Simulation of a Confined Polymer in Solution 
Using the Dissipative Particle Dynamics Method ~ 

Y. Kong, 2 C. W. Manke,  2" 3 W. G. Madden, 2 and A. G. Schlijper 4 

The dynamics of a bead-and-spring polymer chain suspended in a sea of solvent 
particles are examined by dissipative particle dynamics (DPDJ simulations. The 
solvent is treated as a structured medium, comprised of particles subject to both 
solvent-solvent and solvent-polymer interactions and to stochastic Brownian 
forces. Thus hydrodynamic interactions among the beads of the polymer evolve 
naturally from the dynamics of the solvent particles. DPD simulations are about 
two orders of magnitude faster than comparable molecular dynamics simula- 
tions. Here we report the results of an investigation into the effects of confining 
the dissolved polymer chain between two closely spaced parallel walls. Confine- 
ment changes the polymer configuration statistics and produces markedly 
different relaxation times for chain motion parallel and perpendicular to 
the surface. This effect may be partly responsible for the gap width-dependent 
rheological properties observed in nanoscale rheometry. 

KEY WORDS: dissipative particle dynamics; confined polymer chains; 
molecular dynamics simulations. 

i .  I N T R O D U C T I O N  

The rheological properties of dilute solutions of polymers are of interest 
for a variety of industrial applications; automotive lubrication and oil 
recovery are two of many. To enable molecular design of polymers targeted 
at specific applications, it is necessary to understand the link between 
microscopic fluid characteristics (i.e., polymer molecular structure) and 
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macroscopic (i.e., rheological) fluid properties. In both oil recovery and 
lubrication, the rheology of polymer chains confined in very small spaces 
is of particular importance. It also has an important bearing in analytical 
techniques such as size exclusion chromatography. Here we apply the 
dissipative particle dynamics method [1, 23 to investigate dynamic and 
conformational properties of polymer chains confined between parallel 
walls where tile wall spacing is of tile order of macromolecular dimensions. 
Discussion of the extensive earlier theoretical and computational work on 
such systems may be found in the recent monograph by Fleer et al. [3] 
and in tile compendia edited by Sanchez [4] and by Roe [5]. 

In principle, any model fluid system can be simulated rigorously at a 
microscopic level in large-scale computer simulations (i.e., molecular 
dynamics simulations). For polymer solutions and melts, however, the time 
scale separation between the fast solvent relaxation and tile slow polymer 
dynamics makes ordinary molecular dynamics simulations a cumbersome, 
time-consuming, and costly tool, generally requiring dedicated weeks or 
months of supercomputer time for a single simulation. A computationally 
more efficient way of investigating microscopic behavior and rheological 
properties of polymer chains in a solvent is offered by the dissipative par- 
ticle dynamics (DPD) simulation technique, introduced by Hoogerbrugge 
and Koelman [1]. The simulation method is motivated by the highly 
efficient lattice-gas automata methods for simulation of complex fluid flow, 
but generalized for application to the continuum, with mass confined to 
discrete particles. The time-stepping procedure is similar to the basic MD 
scheme but avoids explicit calculation of tile Newtonian forces among the 
particles. The motion of the particles involves both stochastic and dis- 
sipative terms that guarantee evolution of tile system toward equilibrium 
and long time consistency with the Navier-Stokes equations. 

Because ineffectual high-frequency motion is eliminated, the particles 
move relatively large distances in any one time step. As a result, the method 
probes long-time behavior two orders of magnitude more efficiently than 
ordinary molecular dynamics. The collision rules in the DPD method 
imply a soft repulsive intermolecular potential that is not explicitly 
specified. Modifications that allow for attractive interactions are also 
available. It is easy to introduce bead-and-spring-type polymer chains into 
the basic simulation scheme, which results in a suitable model for a dilute 
polymer solution. Schlijper et aL [2] have examined static and dynamic 
scaling relationships for this DPD polymer solution model. For athermal 
solutions at rest, they have shown that the dependence of both radius of 
gyration and relaxation times on molecular weight follow the classical 
Zimm model [6] closely. The small-scale hydrodynamics of solvent 
flow, including hydrodynamic interactions with the polymer and solvent 
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interactions with the confining walls, are modeled explicitly, but the solvent 
is completely characterized in terms of macroscopic parameters such as 
viscosity and density. The basic DPD model is fully described in Ref. 1 and 
details of the DPD polymer model are given in Ref. 2. 

2. S IMULATION DETAILS 

Dilute polymer solutions were modeled by placing a polymer chain 
of N beads connected by N -  I Fraenkel springs [2] in a sea of solvent 
particles. The repulsive-force terms for bead-bead and bead-solvent inter- 
actions are identical to those for solvent-solvent interactions, effectively 
yielding an athermal solution. The particles are confined in a three-dimen- 
sional simulation box of finite size, and periodic boundary conditions are 
applied to produce image boxes that mimic the behavior of an infinitely 
large system. 

Confining walls are modeled by filling a layer at an edge of the simula- 
tion box with solvent particles at four times the bulk density. These "wall'" 
particles are allowed to equilibrate and are then frozen in place so that they 
may interact with the surrounding "'free" solvent particles but cannot move. 
The high density of particles in the frozen wall produces large repulsions 
that exclude polymer and solvent particles from the wall region. Although 
only a single wall is defined within the simulation box, the periodic 
boundary condition produces a parallel image wall, thereby confining the 
solvent and polymer particles between two impenetrable parallel glassy 
surfaces. The thickness of the wall is set equal to the maximum particle- 
particle interaction radius r~, so that mobile particles in adjacent boxes 

Net gap $ 

• Immobile wall particle 
0 Mobile solvent particle 
• Mobile polymer bead 

Fig. 1. Schematic diagram of periodic simula- 
tion box. The polymer chain, suspended in a sea 
of solvent particles, is confined in a gap between 
a dense wall of "'frozen" particles and a parallel- 
image wall from the adjacent simulation box. 
Actual particle densities in the simulations arc 
higher than illustrated here. 
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cannot interact across the thickness of the wall. The spacing between the 
walls is varied, but the net particle density kept constant and equal to 
3 particles per unit volume, r~. A two-dimensional schematic picture of the 
simulation environment is shown in Fig. 1. 

Static and dynamic properties of the polymer chain were determined 
by analyzing the position autocorrelation function defined by 

' i  C(t)=~ ~ [r~(t) - R~.,~(t)] • [ri(0) - R~,1110)] ) (11 
i =  I 

where r,{t) is the position of bead i of the N-bead chain and R~m(t) is the 
center of mass of the chain. The mean value of C(t) at t = 0 yields the mean 
square radius of gyration of the polymer chain. In the unperturbed bulk, 
the decay of C(t) has been shown to proceed exponentially according to a 
spectrum of relaxation times that characterize the chain dynarnics [2].  
The wall confinement employed in this study induces anisotropic chain 
configurations. Therefore. C(t) may be rigorously decomposed into com- 
ponents parallel and perpendicular to the confining wall. which we take to 
be in the XY plane: 

,± C,l(t)=- ~ ~[X,(tI-- X~mlt)][x,(O)-- X~.~(O)] 
t = l  

+ [ . v / ( t ) -  Y~, ,dt)][y,(01- Y~,,d0)] ). (2a) 

l N 

C~(t)=~ = ~[:,(t)-Z~,,dt)][z, lO)-Z~.~[O)]) 12b) 

These quantities are obtained from the simulation data to determine 
direction-dependent dynamical properties. At t=O. Eqs. (2a) and (2b) 
define the mean square radii of gyration parallel and perpendicular to the 
confining surfaces. For purposes of compact presentation. "rg" is used 
as shorthand to indicate ( r~ )  ~2 and is appended with appropriate 
symbols when indicating the contributions parallel and perpendicular to 
the confining walls. 

3. R E S U L T S  

It is well-known that periodic boundary conditions affect the results of 
studies in condensed phases. The general understanding is that dynamical 
properties are affected more strongly than static configurational properties 
[7]  and that these effects are more pronounced in two dimensions than in 
three. Since the confining walls have the effect of varying tile dimensionality 
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of the simulation, we conducted a study of a bulk (wall free) two-dimen- 
sional system involving a single 10-bead polymer chain plus solvent. The 
total density of particles was kept constant as the periodic dimensions were 
increased by the addition of an appropriate number of solvent particles. 
The correlation function was analyzed according to the method described 
in Ref. 2 using a functional form motivated by the classic Zimm model for 
chain relaxation dynamics. For bulk chains in three dimensions, this func- 
tional form fit the data essentially quantitatively. The fits in two dimensions 
are slightly poorer but still quite good. The results of these studies are 
shown in Fig. 2. For clarity, only the relaxation time r~ associated with the 
dominant (lowest) eigenvalue is shown. The abscissa is reduced by the 
radius of gyration for these two-dimensional chains (about 1.5r~). 

As anticipated, both the radius of gyration and the dominant relaxa- 
tion times are relatively independent of box length for larger box sizes 
( L > 4 % )  but are perturbed for smaller boxes. The effect on Ctt), as 
evidenced by tile dominant relaxation time r~, is particularly striking. 
A less dramatic effect would be expected for three-dimensional chains 
under confined conditions. We have therefore performed all calculations 
with the periodic box length in the unconfined directions chosen to be at 
least 4%. We believe this to be a conservative choice. However, it means 
that for longer chains a large number of solvent and wall particles must be 
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Fig. 2. Effect of periodic box length on radius of gyration and 
principal relaxation time for bulk two-dimensiomd (2-D)s imula-  
tions of a 10-bead chain suspended in solvent  The box has dimen- 
sions L x L and the total density is kept fixed by adding solvent 
particles as the box is expanded 



1098 Kong, Manke, Madden, and Schlijper 

included, thus slowing the simulation significantly. In this preliminary 
report, we focus our attention on the results for 5- and 10-bead chains (in 
solvent), with a few preliminary results for chains of length 20 where 
available. 

Figure 3 shows how the parallel and perpendicular components of the 
radius of gyration vary with the gap between the confining walls. What is 
actually shown is the ratio of each quantity to the bulk radii of gyration. 
The prefactors 13/2) ~'-" and 3 j -" ensure that these ratios approach unity 
as the walls are further separated and the polymer increasingly sees an 
unperturbed bulk-like environment. The gap size is given in units of the 
unperturbed radius of gyration of the chains. The scaling behavior is seen 
to be excellent and perhaps even surprising for chains as short as these. 
Note the very small effect of confinement on ~,'ll which is consistent with 
an ideal-chain analysis. A slight increase in this quantity near a wall has 
been indicated in other work on somewhat different systems [8].  

Figure 4 shows typical results for C(t), the global time correlation 
function, as well as its decomposition into components involving dis- 
placements parallel and perpendicular to the wall. The polymer is of length 
10 beads and the net gap between the walls is 6.4rc ( ~ 4.0rg). These correla- 
tion functions are unnormalized, so that C(0)=r~,, C ± ( 0 ) = ( r ~ )  2 and 

Cl l (0)= .ll-" ( l~) .  The decomposition C( t )=  C±(t)+ Cll(t)is rigorous at all 
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Fig, 3. Variation of parallel and perpendicular com- 
ponents of r~ with gap dimension for 3-D simulations of 
5-, 10-. and 20-bead chains. 
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Fig. 4. Decay of the 3-D position autocorrelation function 
C(t) with time for a 10-bead chain confined in a gap of dimen- 
sion 3r,. The parallel and perpendicular components of C(t) 
decay according to widely different relaxation times. 

times. These functions were separately fit to the Zimm functional form 
using the procedure described in Ref. 2. This procedure, which yields a 
different spectrum of relaxation times for each function, loses more than 
a little of its theoretical foundat ion,  since there is no rigorous decoupling 
of the perpendicular  and parallel dynamics  and, indeed, only a single set 
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Fig. 5. Variation of principal relaxation time for parallel 
component of C(t) with gap dimension in 3-D simulations 
of 5- and 10-bead chains. 
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Fig. 6. Variation of principal relaxation time for per- 
pendicuhir component of C(t) with gap dimension in 3-D 
simulations of 5- and 10-bead chains. 

of normal modes in the confined molecules. In fact, the fits to this 
quasi-Zimm form are somewhat poorer than were observed in the three- 
dimensional bulk simulations. However, the spectrum of relaxation times 
gives at least a hint of what might be occurring. For instance, rt~ for the 
Cl'(t) is always very similar to that for C(tl itself and becomes increasingly 
similar as the gap is narrowed. This suggests that the global motion of the 
chain associated with this eigenmode may well be confined largely to move- 
ment parallel to the walls. In contrast, the relaxation time for Cl(t l  for 
substantially confined cases is roughly comparable to the second or third 
relaxation time for the global C(t). This may indicate a much more local 
character to the relaxation mechanism, probably involving isolation of sub- 
chains by the wall. 

Figures 5 and 6 show how r~ varies with gap size for relaxation in 
the parallel and perpendicular directions, respectively. Note that the gap 
between confining surfaces is given here in units of r~ rather than rg. The 
dominant relaxation time for parallel motion, ri~ I, scales well for chains of 
length 5 and 10 when the gap size is small. It remains to be seen whether 
the minor differences for larger gaps are significant. More striking is the 
behavior for perpendicular motion shown in Fig. 6. The data for chains of 
length 10 show a small but persistent decrease with decreasing gap size, 
while the relaxation times for chains of length 5 show a generally increasing 
trend. Whether this is truly a consequence chain length alone or whether 
the roughness of our surfaces also contributes to this phenomenon remains 
unclear. 
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4. C O N C L U S I O N S  

Diss ipa t ivc  par t ic le  d y n a m i c s  a l lows  one  to s tudy  the con f igu ra t i ona l  

and d y n a m i c a l  b e h a v i o r  of  conf ined  cha ins  in the presence  of  so lven t  wi th  

w o r k s t a t i o n - l e v e l  c o m p u t a t i o n a l  rcsourccs.  T h e  obse rved  scal ing of  the 

rad ius  of  g y r a t i o n  with gap  size is cons i s ten t  with o b s e r v a t i o n s  m a d e  on  

s ingle-cha in  systems.  A d e c o m p o s i t i o n  of  the pos i t ion  a u t o c o r r e l a t i o n  func- 

t ion in to  c o m p o n e n t s  paral le l  and p e r p e n d i c u l a r  to the conf in ing  walls  

shows  a s t r ik ing  d iss imi la r i ty  in the d o m i n a n t  r e l axa t ion  t imes  and suggests  

that  different  m o d c s  m a y  be involved .  
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